Browsing by Author "Malika Kacemi"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item A Sustainable Multi-Criteria Optimization Approach for the Energy Retrofit of Collective Housing in Algeria Using the ELECTRE III Tool(Springer Nature, 2025-05-08) Nahla Hilal; Nesrine Chabane; Abderahemane Mejedoub Mokhtari; Malika Kacemi; Zouaoui R. Harrat; Naida Ademovi´; Marijana Hadzima-NyarkoAbstract: This study proposes a sustainable multi-criteria optimization framework for the energy retrofit of collective residential buildings in Algeria, particularly those constructed between the 1970s and 1980s. Through on-site surveys, energy consumption analysis, and seasonal temperature measurements, the high energy demand of these buildings was confirmed. Using EnergyPlus simulations based on Meteoblue weather data, 16 retrofit strategies were assessed—incorporating various insulating materials applied internally or externally (via rendering or cladding). The ELECTRE III decision-making tool was employed, supported by the Simos Revised Framework (SRF) for weighting environmental, economic, and social criteria. Results demonstrate that all strategies significantly reduce energy demand—by up to 72.5%, with reductions reaching 94.4% in winter and 43.5% in summer, depending on insulation type and placement. Improvements in indoor thermal comfort were also observed, with exterior insulation beneath cladding offering the best performance during winter, while exterior rendering also proved effective in the summer. The ELECTRE III analysis identified rock wool and polyurethane with fiber cement cladding as optimal insulation solutions. The proposed approach supports national energy policies and aligns with the Sustainable Development Goals (SDGs), offering a replicable model for large-scale building retrofits in similar climatic and architectural contexts.Item Optimizing Urban Thermal Comfort Through Multi-Criteria Architectural Approaches in Arid Regions: The Case of Béchar, Algeria(Sustainability, 2025-08-25) Nahla Hilal; Radia Benziada; Malika Kacemi; Abderahemane Mejedoub Mokhtari; Naima Fezzioui; Zouaoui R. Harrat; Walid Mansour; Mohammed Chatbi; Md. Habibur Rahman SobuzAbstract Urban planning in arid climates must overcome numerous nonclimatic constraints that often result in outdoor thermal discomfort. This is particularly evident in Béchar, a city in southern Algeria known for its long, intense summers with temperatures frequently exceeding 45 ◦C. This study investigates the influence of urban morphology on thermal comfort and explores architectural and digital solutions to enhance energy performance in buildings. This research focuses on Béchar’s city center, where various urban configurations were analyzed using a multidisciplinary approach that combines typomorphological and climatic analysis with numerical simulations (ENVI-met 3.0 and TRNSYS 16). The results show that shaded zones near buildings have lower thermal loads (under +20 W/m2), while open areas may reach +100 W/m2. The thermal comfort rate varies between 22% and 60%, depending on wall materials and occupancy patterns. High thermal inertia materials, such as stone and compressed stabilized earth blocks (CSEBs), reduce hot discomfort hours to under 1700 h/year but may increase cold discomfort. Combining these materials with targeted insulation improves thermal balance. Key recommendations include compact urban forms, vegetation, shading devices, and high-performance envelopes. Early integration of these strategies can significantly enhance thermal comfort and reduce energy demand in Saharan cities